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Some new results for a classical minimum-time rest-to-rest maneuver problem are presented. An inertially

symmetric rigid body is considered. For the case in which the magnitude of the control is constrained while the

control direction is left free, we analytically prove that the eigenaxismaneuver is the time-minimum solution by using

Pontryagin’s principle. For the case in which the three components of the control are independently constrained, we

discover six- and seven-switch solutions for reorientation angles of less than 72 deg by using a hybrid numerical

approach. The seven-switch solutions are consistent with the classical results, and the six-switch solutions are

reported here for the first time.We find that the two sets of solutions are widely separated in state and control spaces.

However, the two locally optimum maneuver times are very close to each other, although the six-switch control

always has a slightly shorter time. Simulation results that illustrate and validate the new findings are summarized.

Although no conclusive proof is available to date, we believe the six-switch maneuvers to be global extrema.

I. Introduction

M ULTI-AXIS reorientation of a spacecraft in minimum time is
a fundamentally interesting problem from both practical and

mathematical points of view. Space operations very often involve
transferring the spacecraft from one attitude to another in minimum
time. In such cases, usually there will be some constraints on the
amount of control torque that can be applied. Theoretically, the first-
order necessary optimality conditions for this maneuver yield a two-
point boundary value problem. Because the control is appearing
linearly in the dynamic equations, Pontryagin’s principle [1] leads
to a switching-type controller. For multi-axis attitude and angular
velocity optimal control, nonlinear equations ofmotion are involved.
No rigorous analytical solution for a general time-optimal maneuver
has been published so far.

A particular motivation for this paper is the results that Bilimoria
and Wie [2] obtained for a simplified inertially symmetric body.
They used a quaternion parameterization of attitude and considered
the minimum-time reorientation. They proposed admissible control
constraint conditions such that each of the three orthogonal control
components is less than a specified value. They found the solution of
the two-point boundary value problemusing a trial-and-error process
and an unspecified continuation approach. Furthermore, their results
indicated that, for a reorientation angle of less than 72 deg, the
optimal control involved seven switches at distinct switch times.
These results may look counterintuitive at first glance as the
eigenaxis maneuver seems a natural solution to the minimum-time
maneuver problem for this symmetric body [3–5].

One goal of this paper is to show that whether eigenaxis maneuver
is optimal or not depends on the definition of the set of admissible
control. When the three orthogonal components of the control
are independently constrained, the noneigenaxis maneuvers that
Bilimoria and Wie found require less maneuver time because the
nutational components can provide more torques along the re-
orientation axis [2]. However, when the total magnitude of the

control vector is constrained, the eigenaxis maneuver is indeed the
time-optimal solution. This will be proved in Sec. III.

We have also revisited the solutions reported in Bilimoria andWie
[2]. The issue of the global optimality of their solutions appears to be
important because, based on our literature review study, their results
have been a baseline for several subsequent papers [6–9]. Byers and
Vadali [6] considered the case in which the applied torque is much
greater than the nonlinear terms in Euler’s equation. Approximate
solutions are derived to analyze switch times. They compared their
analytical solutions with Bilimoria and Wie’s. Scrivener and
Thompson [7] used collocation and nonlinear programmingmethods
to solve the same problem. Their results were consistent with
Bilimoria and Wie’s until the reorientation angles were less than
10 deg. For angles of less than 10 deg, they found 11 switches. The
authors conjectured that they may not have found valid solutions for
the new control structure and that their new solutions may have been
the result of numerical difficulties because of the small angles. No
conclusions are given in the paper.

These previous studies motivated us to answer some key
questions: Are the solutions reported by Bilimoria and Wie the
global optimal solutions? If not, are there other local extrema?
Theoretically, for this nonlinear problem, although the necessary
conditions Bilimoria and Wie used yield a local stationary point,
there is no guarantee that their numerical search led to a unique
stationary solution or the global minimum-time maneuver.When we
study this fundamental minimum-time maneuver problem, we find
an apparently heretofore unknown truth that there are indeed
multiple stationary solutions (at least two) that satisfy the necessary
conditions: Bilimoria and Wie’s original solution and, more
important, a six-switch local minimum-time maneuver for which
the maneuver time is slightly shorter than the now-classical result
of Bilimoria and Wie. We report here the main results of our
investigation: We have confirmed Bilimoria and Wie’s solution and
we have also found a second localminimum.Our results indicate that
Bilimoria and Wie’s solution is not the global minimum. We show
that the two locally optimal maneuvers are significantly different in
both the control space and the state space; however, the maneuver
times for these two local extrema are very close.

After obtaining the two sets of solutions, we noticed that there
are very few published results on the second-order sufficient
conditions for bang–bang control problems. The pioneering studies
by Sarychev [10] and the recent work by Agrachev et al. [11] did not
provide a clear approach for implementation and do not appear
attractive for numerical validation. Maurer and Osmolovskii [12]
provided a systematic numerical method to verify the second-order
conditions. In the case of one or two switches, the tests are very easy
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to implement. However, Maurer and Osmolovskii precluded simul-
taneous switching bang–bang control structures when they derived
the second-order conditions. We have verified that the seven-switch
maneuver satisfies the second-order conditions proposed in Maurer
and Osmolovskii’s paper. However, for the new control structure
using six switches, our results show that there are two control
components switching simultaneously. This multiple simultaneous
switch phenomenon happens for all themaneuver solutionswhen the
reorientation angle is less than 72 deg. Thus, the conditions reported
by Maurer and Osmolovskii could not be directly applied to the
present problem.

Amajor difference between thewaywe formulate the problem and
most of the previous minimum-time maneuver studies is the
kinematic description. It has become common to use Euler pa-
rameters (the elements of the quaternion) instead of Euler angles for
attitude descriptions because of the nonsingular behavior of the
kinematic description [13]. However, even though Vadali [14] has
rigorously shown that the unit norm constraint of the Euler
parameters does not need to be included explicitly in the formulation
of the system, redundant parameters bring extra costates to be solved.
In this paper,we use themodifiedRodrigues parameter (MRP) vector
[15] instead of the Euler parameters for the kinematic description
because the MRP vector is a nonredundant three-parameter de-
scription. When iterating to solve the two-point boundary value
problem, the advantages of minimal parameter representation are
obvious. Using the MRP vector reduces the dimension of this two-
point boundary value problem from 14 to 12. Additionally, we find
that, by using the MRP vector, it is easy to extract the initial costates
for the hybrid approach that we use in this paper. Also notice that the
MRP vector has no geometric singularity in the closed interval of
rotational angle�360 deg, which is the range ofmaneuvers formost
spacecraft practical applications and all of those considered in this
paper.

We now provide an overview of the structure of the present paper.
In Sec. II, we use the MRP vector to formulate the optimal control
problem for a spherically symmetric rigid body. In Sec. III, we prove
that the eigenaxis maneuver is the time-optimal solution when the
control is constrained within a sphere. In Sec. IV, the numerical
approach to solve the optimal control for the case inwhich the control
is within a cube is presented, followed by the simulation results that
show the differences between the two locally optimalmaneuvers.We
present our conclusions in Sec. V.

II. Problem Formulation

The nondimensional rotational equation for the spherically
symmetric rigid body is formulated by Bilimoria and Wie [2] as

_!� u; ! 2 R3; u 2 R3 (1)

where ! is the nondimensional angular velocity, and u is the
nondimensional control.

Using the MRP vector, the kinematic equation is [15]

_�� 1=4�B����!

� 1=4

1� �2 � 2�21 2��1�2 � �3� 2��1�3 � �2�
2��2�1 � �3� 1� �2 � 2�22 2��2�3 � �1�
2��3�1 � �2� 2��3�2 � �1� 1� �2 � 2�23

2
64

3
75! (2)

where �T � ��1; �2; �3�T, and

�2 �
X3
i�1

�2i (3)

The MRP vector is related to the principal rotation angle � and
eigenvector ê by [15]

� � tan��=4�ê (4)

Consider a rest-to-rest maneuver with a net reorientation about the
inertial Iz axis. The principal rotation angle is �f. The boundary
conditions for the angular velocity and the MRP vector are

!1�0� � !2�0� � !3�0� � 0 (5)

�1�0� � �2�0� � �3�0� � 0 (6)

!1�Tf� � !2�Tf� � !3�Tf� � 0 (7)

�1�Tf� � �2�Tf� � 0; �3�Tf� � tan��=4� (8)

where we assume the initial time is 0 and the final time is Tf . The
Hamiltonian for minimizing the maneuvering time is

H � 1� �!1
u1 � �!2

u2 � �!3
u3 � ��1 _�1 � ��2 _�3 � ��3 _�3

� 1� �T
!u� �T

� _� (9)

To satisfy the first-order necessary conditions [1], the differential
equations for the costates are
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�
(10)
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For thisminimum-time problem, the boundary condition [1] requires
the Hamiltonian in Eq. (9) to be zero at the final time. Depending on
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which of the two different types of control constraints is chosen, we
will have two different optimal solutions, as shown in the following
two sections.

III. Admissible Control Torque Vector Lies
Within a Unit Sphere

When themagnitude of the control is constrainedwhile the control
direction is left free, a body-fixed coordinate system can be defined
such that the body z axis is aligned with the inertial Iz axis, which is
the eigenaxis for the reorientation maneuver defined in Sec. II. The
body x and y axes are left free but are required to complete a right-
hand orthogonal reference frame. As shown in Fig. 1, two angles, �
and �, are used to define the control direction relative to the specified
reference frame. For the case in which the magnitude of the
nondimensional control is constrained by one, the three control
components in the prescribed frame are

L c�t� �
L�t� sin���t��

L�t� cos���t�� cos���t��
L�t� cos���t�� sin���t��

" #
(16)

where 0 	 L�t� 	 1, ���=2� 	 ��t� 	 ��=2�, and 0 	 ��t�< 2�.
Using the first- and second-order optimality conditions [1], the

optimal control angles are

�� a tan 2���!1
;
���������������������
�2!2
� �2!3

q
� (17)

�� a tan 2���!3
;��!2

� (18)

where a tan 2�
� is the four-quadrant inverse tangent function that
returns the angles in the interval ���=2; �=2�.

The optimal control magnitude is

L� 0; if �!1
sin��� � �!2

cos��� cos��� � �!3
cos��� sin���> 0

(19)

L� 1; if �!1
sin��� � �!2

cos��� cos��� � �!3
cos��� sin��� 	 0

(20)

Define the initial conditions for the costates as

�!1
�0� � 0 (21)

�!2
�0� � 0 (22)

�!3
�0� � �1 (23)

��1�0� � 0 (24)

��2�0� � 0 (25)

��3�0� � ��4=
������
�f

p
� (26)

The analytical solutions for this initial value problem are shown
in the following equations with the minimum-time solution Tf�
2

������
�f

p
.

The angular velocity history is

!1�t� � 0 (27)

!2�t� � 0 (28)

!3�t� � t; 0 	 t 	
������
�f

p
; !3�t� � �t� 2

������
�f

p
������
�f

p
< t < 2

������
�f

p (29)

The MRP vector time history follows:

�1�t� � 0 (30)

�2�t� � 0 (31)

�3�t� � actan

�
1
8
t2
�
; 0 	 t 	

������
�f

p
;

�3�t� � actan

�
�1

8
t2 � �

���
�

p
=2�t � 1

4
�f

�
;

������
�f

p
< t < 2

������
�f

p
(32)

The costate histories are

�!1
�t� � 0 (33)

�!2
�t� � 0 (34)

�!3
�t� � �1� �1=

������
�f

p
�t (35)

and

��1�t� � 0 (36)

��2�t� � 0 (37)

_� �3 ��1
2
��3�3!3 (38)

The optimal control law from Eqs. (17) and (18) provides the
directional angles:

�� 0 (39)

�� a tan 2���!3
; 0� � �=2; 0 	 t 	

������
�f

p
;

�� a tan 2���!3
; 0� � ��=2;

������
�f

p
	 t 	 2

������
�f

p (40)

These control angle solutions, together with Eqs. (19) and (20), lead
to the optimal control magnitude as L� 1. The Hamiltonian at the
final time is zero because

x

z

y

O

β

α

u

Fig. 1 Control direction definition.
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H�Tf� �H�2
������
�f

p
�

� 1� �!3
�2

������
�f

p
�u3�2

������
�f

p
� � ��3�2

������
�f

p
� _�3�2

������
�f

p
�

� 1� ��1� � �1� � 0� 0 (41)

Equations (27–32) satisfy the boundary conditions !1�Tf��
!2�Tf� � !3�Tf� � 0, �1�Tf� � �2�Tf� � 0, and �3�Tf� � tan��f

4
�.

They also show that the optimal motion is an eigenaxis maneuver.
Equations (39–41) show that the optimal control is a bang–bang
control about the eigenaxis.

IV. Admissible Control Torque Vector Lies
Within a Unit Cube

A. Optimal Control Formulation

This is the case that was discussed by Bilimoria and Wie [2]. The
bounds on the admissible control components are

� 1 	 ui�t� 	 1; i� 1; 2; 3 (42)

By invoking Pontryagin’s principle [1], the optimal control law from
minimization of H in Eq. (9) over the admissible set of Eq. (42) has
the form

u ��sign��!� (43)

or, explicitly,

ui � 1; if �!�i�< 0 (44)

ui ��1; if �!�i�> 0 (45)

ui � us; if �!�i� � 0 (46)

where i� f1; 2; 3g, and us represents some singular control law.We
point out that the singular control case in which one or two
components of the costates �! becomes zero over a finite time
interval is not formally considered in this paper. Both Bilimoria and
Wie’s paper [2] and the present paper found no numerical evidence
that singular subarcs exist for this problem, but a rigorous proof is not
available so far.

B. Hybrid Approach to Solve the Problem

To improve the accuracy of the direct optimization solutions and
to enlarge the convergence domain of the indirectmethods, Stryk and
Bulirsch [16] proposed a hybrid approach to solve the optimal
control problem. This cascaded computational scheme has become
widely applied in many recent papers [9,17]. The key idea is to
extract the costates and other control structure information from a
nonlinear programming approach as a first step. The indirect
shooting method is then used to refine the solutions. We summarize
the three major steps we use to solve for the optimal maneuver
solutions and to validate the results based on the first-order
optimality conditions [1].

Step 1: The kinematic and dynamic differentiation equations are
discretized using the trapezoidal method [18]. Function fmincon in
MATLAB® is used to get the preliminary and approximate control
structures, switching times, and initial costates.

Step 2: Using the results from step 1 as the initial guess, fmincon is
used as a shooting method to solve the two-point boundary value
problem. The constraints include the final time conditions and the
invariance of the Hamiltonian.

Step 3: The results from step 2, together with the originally known
initial time state conditions, are used to solve for the dynamic system
response by integrating the kinematic and dynamic equations
forward in time. TheHamiltonian history and the final state errors are
the validation criteria.

We find that this three-step process efficiently leads to accurately
converged results. However,we can only guarantee that the solutions

we find are local extrema. By studying various experiments, we are
fairly confident, however, that there are just two sets of local extrema
for this problem and that the new results reported herein give the
global minimum-time maneuver.

C. Numerical Results and Validation

We find five-switch solutions when the reorientation angles are
greater than 72 deg, and our solutions are consistent with the results
published in [2]. We find seven- and six-switch maneuvers when the
reorientation angles are less than or equal to 72 deg. The final
boundary condition errors are less than 10�12 for all the following
maneuver solutions. The interesting discovery is that, for all
reorientation angles less than 72 deg, the two maneuvers are totally
distinct even though the optimal times for the twomaneuver times are
nearly equal. For example, when the reorientation angle is 45 deg, the
nondimensional maneuver time [2] is 1.7499 for the seven-switch
case and 1.7471 for the six-switch case. The angular velocity,
Hamiltonian, MRP vector, and control structure for the two sets of
maneuvers with a 45 deg reorientation are shown in Figs. 2–7.
Comparing Figs. 2 and 5, we can see that the dynamic responses for
these two controls are totally different. Figures 3, 4, 6, and 7 confirm
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time

a) b)

w1
w2
w3

0 0.5 1 1.5 2
−0.05

0

0.05

0.1

0.15

0.2
σ

time

σ
1

σ
2

σ
3

Fig. 2 45 deg maneuver with seven switches: a) angular velocity, and

b) MRP.
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Fig. 3 45 deg maneuver with seven switches: Hamiltonian.
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that both control laws satisfy Pontryagin’s principle. As shown in
Fig. 7, for the six-switch case, both u1 and u3 switch in the middle of
themaneuver.Wefind that this simultaneous switch pattern holds for
all six solutions when the reorientation angle runs from 72 to 1 deg.

Figure 8 shows the relative maneuver time increase by using a
seven-switch control instead of a six-switch control. The sample
reorientation angles are chosen as f1; 10; 45; 60; 72g deg. We can
see that the superiority of the six-switch control over the seven-
switch control is most significant for the 45 deg reorientation.
Figure 9 shows the contour plot of rotational displacement difference
between the two local minimum solutions as a function of both the
maneuver angle and resulting maneuver time. The principle rotation
angles are calculated from the MRP vector using the forms given in
Schaub and Junkins [15]. For a specific degree of reorientation, the
principle rotation angles for the twomaneuvers are the same initially.
Their difference increases until halfway through the maneuver,
corresponding to half of the minimum time. The difference then
decreases back to zero at the final time, which shows the consistency
of the boundary conditions. For different reorientation maneuvers,
the maximum difference appears for the 72 deg maneuver. The
maximum principle rotation angle difference is about 18 deg.
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Fig. 4 45 deg maneuver with seven switches: control with �!.
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Fig. 5 45 deg maneuver with six switches: a) angular velocity, and
b) MRP.
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Fig. 6 45 deg maneuver with six switches: Hamiltonian.
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Fig. 7 45 deg maneuver with six switches: control with �!.
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V. Conclusions

Some new results for the classical minimum-time rest-to-rest
inertially symmetric rigid bodymaneuver problem are presented and
verified. The intuitive eigenaxismaneuver is proved to be the optimal
minimum-time solution when the control is constrained within a unit
sphere.When the control components are independently constrained
within a unit cube, we show that Bilimoria and Wie’s seven-switch
control laws and our new control laws with six switches are distinct
local optimal solutions. After we obtained these new findings, we
also resorted to a different optimizer, SNOPT 7.2 [19], to solve for
the initial costates for further validation. The solutions returned by
SNOPT agree with high precision with the results obtained using
fmincon. We also discretized the system and solved the transcribed
nonlinear programming problem (“direct” minimization) using
SNOPT. We find that, depending on the initial guesses to the
solution, SNOPT may converge locally to either the six- or seven-
switch solution, again confirming the existence of local minima.

Although the maneuver times for the new six-switch local optima
are slightly shorter than for Bilimoria and Wie’s seven-switch local
optima and are, we believe, the global optimal solutions, we observe
that the reduction inmaneuver time is small. For the case inwhich the
reorientation angle is 45 deg, the time increase by using seven
switches instead of six switches is about 0.15%. We did one test to
eliminate one switch out of the six switches; the solution violated
Pontryagin’s principle in this case but the maneuver time increased
by only 0.39%. Considering the time increase by using the eigenaxis
maneuver, which only involves one switch, is only 1.45% longer, we
think (as a practical matter) that all these interesting numbers tell us
that the easy-to-implement eigenaxis control remains a very good
suboptimal control solution. We also point out that, for both the
seven- and six-switch solutions, there exists a finite number of
control patterns that can be obtained by permutation of the control
structures given in this paper. Obviously, the number of switcheswill
not change as a result of the permutation, but the suboptimal state
space excursions and variations in maneuver timemay be of interest.
Finally, by revisiting this classical problem, we find there remain
some interesting nonlinear behaviors involvedwith this problem that
are not yet well understood. We need further qualitatively insights:
Why is the five-switch control the optimal solution for reorientation
angles greater than 72deg?Why are there two local solutionswith six
or seven switches when the reorientation angle is equal to or less than
72 deg? Is there an easy-to-implement second-order optimality
condition for a general bang–bang control problem besides the
current results of Maurer and Osmolovskii?

Even though these questions remain, this paper, together with the
cited literature, brings the solution of this classical problem to a
mature state of completion.
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